
Simulating Neutron Transport: A Monte Carlo
Approach in Serial and Parallel Environments

Agit Yesiloz
Department of Computing Sciences

Coastal Carolina University
Conway, SC, USA

ayesiloz@coastal.edu

Abstract—The research project examines the Monte Carlo
simulation for neutron transport considering how neutrons are
either reflected, absorbed or transmitted as they pass through
different materials. We investigate on the interaction of neu-
trons using both serial and parallel computational approaches
under various conditions as specified by particular values of
the absorption coefficient (A), interaction parameter (C), and
thickness of material (H). Our objective is to study the statistical
distribution and kinetics of neutron transportation. In order to
execute parallel computations, we ran our simulations on multiple
processing nodes of Expanse portal at San Diego Supercomputer
Centre via Message Passing Interface (MPI) framework. Thus
large scale simulations become manageable since we distribute
workloads across many processors greatly improving both speed
and scalability of computations. To gather detailed data for anal-
ysis extensive parameter sweeps were performed with variations
in A, C, and H leading to neutronics behavior running under
different settings. The findings are visualized in 3D plots and 2D
heatmaps that point out unique patterns which come about from
interactions amongst these parameters thus providing insight into
shielding efficiency and characterization of materials.

The benefits of employing distributed computing in nuclear
physics simulations are illustrated by performance benchmarks
of parallel implementation, which show how high-performance
computing resources can improve simulations. It not only ex-
pands our theoretical understanding of neutron transport but
also paves the way for future studies that will seek to optimize
and forecast neutron behaviors in complicated nuclear situations.

Index Terms—Monte Carlo simulation, Neutron transport,
Serial and parallel computation, Message Passing Interface (MPI)

I. INTRODUCTION

In nuclear physics, neutron transport simulations are crucial
in understanding how neutrons are affected by different ma-
terials. For example, they play a major role in the design of
nuclear reactors, shielding from radiations and studying fun-
damental nuclear interactions. In this project neutron transport
is modeled using Monte Carlo methods; a statistical method
that relies on random sampling for solving physical problems.
Thus it makes possible to study (with the help of Monte Carlo
simulations) the behavior of neutrons through diverse media.

The research has concentrated on two computational meth-
ods: serial and parallel computing. Serial computing provides
a framework against which other approaches may be compared
while parallel processing uses Message Pass Interface (MPI)

to distribute tasks among more than one processor in use. This
division is important when dealing with large scale simulations
that are computationally intensive especially in determining
how various physical parameters affect neutron’s behaviour.

The study will set up the basic instrumental parameters
such as interaction parameter of C, absorption parameter of
A, and the thickness (H). For any of the active parameters, the
function of the case is to decide if the absorption, reflection,
or transmission takes place in the material. by assessing the
parameter interaction (for example, impurity, particle size,
fluence, and temperature), it identifies the material modu-
lation in response to neutron radiation. It is an integration
of these phenomena that makes it useful in material design
and safety in nuclear engineering. Using a host of resources
at the Expansion gateway port at the Compute center of
San Diego Supercomputer, the research improves computing
skills that add the ability to perform multi-parameter won-won
space sweeping and perform analysis that involves data. The
availability of this capacity serves the extensively researching
type of interactions between A, C and H. Such research
consequently leads to the more deep and accurate sense of
both neutron characteristics as well as the material properties
in different circumstances. In a more precise way , the project
that the paper will build could be the theoretical entity of
the neutron migration, but it also creates a strong base in
the fields of nuclear science and engineering development for
future studies. Through the use of detailed simulations and
an evaluation of performance that should comprise different
system configurations, the objective may be achieved that
would ensure a more safe and effective system.

A. What is Neutron Transport?

The Neutron Transport is the study of the behavioral char-
acteristics of neutrons in various materials as they move in
them. This ability is vital for many areas of use, such as
nuclear reactors, nondestructive testing, medical imaging and
treatment. In other words, the definition of neutron transport
can be seen as neutrons encounter atomic nuclei and either
scattered, absorbed or fission depending on the material and
energy variables. These interactions are then described by
the so-called neutron transport equation which is a type of



Fig. 1. Illustration of Neutron Transport. Neutrons interacting with a material
are either absorbed, reflected, or transmitted. [1]

integro-differential equation which is a probabilistic approach
for different of such interactions.interactions. [2]

B. Why Use Monte Carlo Methods for Neutron Transport?

In terms of complex systems, such as when neutrons bounce
randomly or get absorbed, these simulations are really great
because they are not tidy and not suitable for regular math.
This is a tool that enables to go under the covers of what
is happening in this case.Monte Carlo methods are amaz-
ingly good at visualizing neutron motion through substances,
especially in complicated scenarios. Basically, they resort to
random sampling to predict where neutrons will go; it matters
since neutron-related phenomena are all about probabilities
and randomness due to quantum mechanics. Hence, these
calculations save the day when confronted with situations
in which Mathematics becomes too much for conventional
approaches like scattering or absorption of neutrons by chance.
So, Monte Carlo simulations pull out solutions from thin air
just like a magician would do with his hat while solving
problems where traditional methods fail-developed ones fall
short. [3]

C. What Are the Key Parameters in Neutron Transport?

In neutron transport simulations, several parameters are
pivotal:

• Absorption coefficient (A): Indicates the probability per
unit path length that a neutron will be absorbed.

• Interaction parameter (C): Represents the mean free path,
the average distance a neutron travels between interac-
tions.

• Material thickness (H): Affects the overall likelihood of
neutrons being transmitted through, reflected from, or
absorbed by the material.

These parameters determine the macroscopic behavior of
neutrons and thus directly influence the design and analysis
of nuclear systems.

D. How Does Serial Processing Work in Neutron Transport
Simulation?

Serialized calculations are those performed on a single
central processing unit, C.P.U., where each task is done in
order. Despite its simplicity, it is time-consuming when applied
to fast neutron transport systems with complex geometries or
large numbers of neutron life histories. Validation of simula-
tion results can be done through serial calculations which serve
as baseline so that any error is detected before considering
more computationally intensive parallel simulations. [4]

E. What Advantages Does Parallel Computation Offer?

Neutron transport simulations are typically carried out us-
ing parallel computing methods, whereby a large number of
processors are used and the workload is divided among all
the available processors. Using parallel computing reduces
computation times and allows us to carry out larger and
more detailed simulations before becoming computationally
prohibitive. Tasks are distributed and controlled using the MPI
protocol (Message Passing Interface) which has been designed
to use computing resources in the most efficient way. It also
enables analysis in real time, as well as larger parameter
sweeps.. [5]

Fig. 2. Illustration of Neutron Transport. Neutrons interacting with a material
are either absorbed, reflected, or transmitted. [6]

F. How Is Performance Evaluated in Neutron Transport
Simulations?

Neutron transport simulation performance is traditionally
assessed in terms of speedup, efficiency and scalability.
Speedup is a gauge of how much faster a target parallel
program runs on a given platform compared with a serial
(programmed sequentially with no concurrency) version of
the same code running on the same platform. Efficiency is
an evaluation of how well the parallel system utilises the
computational resources that are assigned to it. Scalability is
an appraisal of how well a simulation manages to improve its
performance as more and more computational resources are
assigned to it.



G. MPI (Message Passing Interface)

The Message Passing Interface, or MPI for short, is essen-
tially the established standard for setting up communication
between parallel processes. It calls the shots, as it were, during
the distribution of programs across several processors the go-
to set of rules for ushering scientific programs from shared
memory machines to clusters, meshes and grids. It’s C, C++,
Fortran or whatever else you’re using to code – MPI provides
a set of functions that make it natural for different processors
to speak to each other in a community where everyone knows
the rules and your code can live openly and reproducibly,
combined with codes from all over the world, making it
possible to build next-generation applications that can run
on thousands or eventually millions of processors. Parallel
computing would not have been able to scale up to the extent
it has. [7]

II. DESIGN

Difference of neutron transport simulation, a background
of our project using parallel computing process to increase
basic understandings and efficiencies of neutron interaction
within the material. Simulation code using the benefits of
parallel computing through MPI (Message Passing Interface),
an interprocess communication system for distributed memory
programming that utilises multiple processors over a single
node on a parallel computational system. Unlikle of OpenMP,
MPI allows processes to be executed parallelly rather than
shared memory applications. Although single computer clus-
ters could be sharing the amount of memory, various node
systems are able to communicates, traverse amongst nodes,
and function distinctly. For our purpose, using the Expanse
portal at Centre for Information Technology Research in the
Interest of Society (CITRIS) at the San Diego Supercomputer
Center does not require expensive physical hardware systems.
We coded our program in C language, which has a high level
of computational efficiency and more precision of operation
over hardware resources. To take full benefit of parallel com-
putation nodes, specifically in this neutron transport problem,
storing data and results on the hard drive is tremendously
time consuming and would lead to cumbersome sequence
of mass data transmission. Hence, in this section, we hope
to undercover background application of data processing and
operate in such a manner to distribute the worksplit among
several nodes efficacious and compact. By the end of this
section, we will be able to foresee an P-code used for parallel
programming of neutron transport simulation, how we have
implemented it, and work on optimisation strategy.

A. Technology Stack

In our project, we employed a combination of technologies
to develop and analyze our parallel matrix multiplication
implementation. Here’s an overview:

• C Programming Language: We chose C for its per-
formance and suitability for systems programming. It
provided us with the low-level control necessary for
optimizing parallel computations.

• Utilized MPI to manage communication between dis-
tributed processes, essential for our work on the super-
computing cluster.

• Visual Studio Code (VSCODE): For our development en-
vironment, we utilized Visual Studio Code, a lightweight
yet powerful source code editor. It provided a user-
friendly interface for writing and debugging C code.

• Windows Subsystem for Linux (WSL): To run our code in
a Linux environment on Windows, we utilized Windows
Subsystem for Linux. This allowed us to seamlessly work
with Linux-based tools and libraries.

• Python: We used Python for data analysis and visual-
ization. With libraries like Matplotlib and NumPy, we
generated graphs to analyze the performance of our
parallel matrix multiplication implementation.

• Used San Diego Super Computer Center expanse portal
to submit our jobs.

1) Neutron-Transport Serial Version: This C program sim-
ulates neutron transport using the Monte Carlo method.

int opt;
while((opt=getopt(argc,argv,"A:C:H:n:"))!=-1) {
switch(opt){

case ’A’:
A = atof(optarg);
break;

case ’C’:
C = atof(optarg);
break;

case ’H’:
H = atof(optarg);
break;

case ’n’:
n = atoi(optarg);
break;

default:
fprintf(stderr, "Usage: %s -A -C -H -n
\n",argv[0]);
exit(EXIT_FAILURE);

}
}

Parses the command-line arguments to set the simulation
parameters.

• Uses getopt to handle options -A, -C, -H, and -n.
• -A absorption
• -C interaction
• -H thickness
• -n number of neutrons

int r = 0, b = 0, t = 0;
for (int i = 0; i < n; ++i) {

double d = 0, x = 0, L, u;
int a = 1;

seed[0] = (unsigned short)time(NULL);
seed[1] = (unsigned short)i;
seed[2] = (unsigned short)(i * 2);

while (a) {
u = generate_uniform(seed);
L = -1/C * log(u);



x += L * cos(d);

if (x < 0) {
++r;
a = 0;

} else if (x > H) {
++t;
a = 0;

} else if (u < A/C) {
++b;
a = 0;

} else {
d = generate_uniform(seed) * M_PI;

}
}

}

This part above simulates the transport of neutrons within
the material and to determine whether each neutron is:

• Reflected
• Absorbed
• Transmitted

B. Neutron-Transport Parallel Version Using MPI

This program is designed to simulate neutron transport using
parallel computing methods that faciliated by MPI. Using this
code with parallezation will give us to do larger computations
in shorter amount of times. This program also has similar
parameter handling as serial program.

MPI_Bcast(&A, 1, MPI_DOUBLE, 0,MPI_COMM_WORLD);
MPI_Bcast(&C, 1, MPI_DOUBLE, 0,MPI_COMM_WORLD);
MPI_Bcast(&H, 1, MPI_DOUBLE, 0,MPI_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0,MPI_COMM_WORLD);

• Broadcast the simulation parameters from the root pro-
cess to all processes

// Local simulation loop
for (int i = 0; i < local_n; ++i) {

double d = 0, x = 0, L, u;
int a = 1;

while (a) {
// Generate a random number using erand48()

u = erand48(seedp);
L = -1/C * log(u);
x += L * cos(d);

if (x < 0) {
++local_r;
a = 0;

} else if (x > H) {
++local_t;
a = 0;

} else if (u < A/C) {
++local_b;
a = 0;

} else {
// Update the direction using erand48()

d = erand48(seedp) * M_PI;
}

}

}

• The program randomly decides how far a neutron will
travel before it interacts with something by using a special
math function with a random number.

• It then updates where the neutron is based on how far it’s
supposed to travel, taking into account its direction.

• The program checks if the neutron has left the material,
got absorbed, or needs a new direction

– If it goes past the edge, it’s counted as transmitted.
– If it doesn’t go far enough, it might get absorbed.
– If neither, it bounces around inside a bit more.

• If the neutron is still in the material and hasn’t been
absorbed, it gets a new random direction and the process
repeats.

// Reduce the local counts to the total counts
// on the root process
int total_r, total_b, total_t;
MPI_Reduce(&local_r, &total_r, 1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&local_b, &total_b, 1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&local_t, &total_t, 1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);

• At the end of the simulation, each processor has its own
count of how many neutrons were reflected, absorbed,
and transmitted.

• The program adds up all these counts from every proces-
sor to get the total numbers. It uses a special MPI function
called MPI Reduce that pulls all these local results and
calculates the total for each type of interaction.

• All these total counts are sent to one main processor,
known as the root processor. This is where the final results
are gathered and can be looked at or used for further
analysis.

C. Gather Sweep Data Python Script

This Python script is designed to collect the data from neu-
tron transport simulations accross from different parameters.
It effectively run the experiments on various combinations
of absorption coefficient and material thickness. The scripts
checks for user input to required to name an output file,
and record s how many neutrons are reflected, absorbed, and
transmitted. Results from the simulation are calculated with
respect to their fractions. And results saved into a CSV file
for easier analysis.

# Run the simulation and get the output
command = [’./nt-serial’, ’-A’, str(A),
’-C’, ’10.0’, ’-H’, str(H), ’-n’, ’1000’]

result = subprocess.run(command,
capture_output=True, text=True)

output = result.stdout

# Check if the run was successful
if result.returncode != 0:

print(f"Error running simulation with A={A}



and H={H}: {result.stderr}")
continue

# extract r,b,and t values
r, b, t = parse_output(output)

if r is not None and b is not
None and t is not None:
# Calculate fractions
r_n = r / 1000.0
b_n = b / 1000.0
t_n = t / 1000.0
# Write the data to the CSV
writer.writerow([A, H, r_n, b_n, t_n])

else:
print(f"Failed to parse output

for A={A}, H={H}")

D. Gather Performance Data Python Script

This is a script for the serial execution of a neutron
transport simulation when evaluating the performance: It runs
the exercise for different numbers of neutrons (N values) and
different numbers of processors to evaluate the scaling of the
performance. The script records the time it took to run each
simulation for N (number of neutrons) with a serial version
of the program and with its parallel version using the MPI
library for different numbers of processors that is used. The
results of all the experiments, number of processors used and
the execution times for the serial and parallel runs are stored
in to a CSV file.

# Run the serial program
start_time = time.time()
subprocess.run([’./nt-serial’, ’--A’, str(A),
’--C’, str(C), ’--H’, str(H), ’--n’, str(N)])
end_time = time.time()
time_serial = end_time - start_time

# Loop over the number of processes
for p in processes:

# Run the MPI program
start_time = time.time()
subprocess.run([’mpirun’, ’-np’, str(p),
’./nt-parallel’, ’--A’, str(A), ’--C’,

str(C), ’--H’, str(H), ’--n’, str(N)])
end_time = time.time()
time_MPI = end_time - start_time

# Write the data to the file
writer.writerow([N, p, time_serial, time_MPI])

III. EXPERIMENTATION AND RESULTS

float This section elaborates on the experimental setup, exe-
cution process, and the outcomes attained within the Expanse
portal, a high-performance computing environment. Following
execution, the resulting output files underwent analysis via a
Python script to create performance graphs.

A. Experimental Setup
The bash script intended to be submitted as a job to a

high-performance computing (HPC) cluster using the Slurm

workload manager. The script below designed to specify
the job requirements and environment settings for running a
parallelized program using MPI on an HPC cluster managed
by Slurm on expanse portal.

#!/bin/bash

#SBATCH --job-name="neutron_sim"
#SBATCH --output="output_%j.csv"
#SBATCH --partition=shared
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=64
#SBATCH --cpus-per-task=1
#SBATCH --mem=12GB
#SBATCH --account=ccu108
#SBATCH --export=ALL
#SBATCH -t 00:45:00
module purge
module load slurm
module load cpu
module load gcc/10.2.0
module load openmpi/4.1.1
mpicc -Wall -std=c11 -o nt-parallel

nt-parallel.c functions.c -lm

# Define N values for the sweep
N_VALUES=(96000 144000 160000 )

# Define the values for A, C, and H
A=0.01
C=200
H=100

# Start the loop within the SLURM script
for N in "${N_VALUES[@]}"; do

for THREADS in $(seq 1 64); do
echo "Running simulation with N=${N}
and THREADS=${THREADS}"

# Use srun to specify the number of tasks
dynamically

mpirun -n $THREADS ./nt-parallel --A
$A --C $C --H $H --n $N

done
done

B. Execution Procedure

The execution procedure involved submitting the imple-
mented matrix multiplication algorithms to the Expanse portal,
a high-performance computing environment. The programs
were compiled with the necessary dependencies, including
OpenMP support for MPI, and then submitted as jobs to the
cluster using the Slurm workload manager.

Once the jobs were submitted and executed, the output files
containing the computed results were generated. These output
files were then analyzed using a Python script designed to
extract relevant performance metrics and generate graphical
representations for further analysis.



IV. RESULTS

The results obtained from the Expanse portal after executing the matrix multiplication algorithms provided valuable insights
into their performance. To analyze these results effectively, a Python script leveraging libraries such as Matplotlib, NumPy,
and Pandas was utilized.

A. Time

Fig. 3. Execution Time Versus Thread Count for Different Neutron Counts. The chart displays how the simulation’s execution time changes with the number
of threads used, underlining the effects of parallel processing on neutron transport calculations in the Expanse supercomputer framework.

As the number of processors increases, the execution time initially decreases. This trend suggests that adding more processing
power substantially speeds up the calculations but the does not perform well with larger number of threads.

B. Speedup

Fig. 4. This graph shows the speedup of a parallel neutron transport simulation relative to the number of threads (P) for various problem sizes (N), indicating
the optimal threading point for computational efficiency in a high-performance computing environment.

Speedup in parallel computing refers to the performance gain of running a task on multiple processors in comparison to a
single processor. Essentially, if a task takes less time to complete on multiple processors than it would on one, that reduction



in time is the speedup. It’s calculated by taking the time a task would take on a single processor and dividing it by the time
it takes using multiple processors.

S(P ) =
Tserial

Tparallel(P )
(1)

The graph shows that while parallelization can significantly speed up computation, there’s a complex relationship between the
number of threads, the problem size, and the efficiency gains, underscoring the importance of tuning parallel applications for
specific problem sizes and computing environments.

C. Efficiency

Fig. 5. Efficiency versus Thread Count for Various Neutron Counts. This plot compares the computational efficiency of a parallel neutron transport simulation
across different thread counts (P) in the Expanse supercomputing environment, illustrating the trade-offs between processing power and problem size (N).

Efficiency is about how well the multiple processors are being utilized. It’s calculated by taking the speedup and dividing it
by the number of processors. Perfect efficiency means that all processors contribute equally and effectively to completing the
task, without any waste of resources or time. In reality, efficiency often decreases as the number of processors increases due
to factors like communication overhead or imbalance in the distribution of work among processors.

E =
S

P
=

Tserial

P · Tparallel(P )
(2)

This graph portrays how efficiently a parallelized neutron transport simulation runs as we increase the thread count. It shows
that with fewer threads, the efficiency starts off high, making good use of the parallel setup. However, as more threads are
added, the efficiency starts to go down, indicating that the communication between threads—begin to benefits of additional
parallelism. Interestingly, the bigger the problem size (higher N values), the longer the efficiency remains high as thread count
increases, suggesting that larger problems can be more effectively parallelized.

D. Neutron Transport Visualization

1) Neutron Interaction with Varying Material Thickness:

• The sharp drop in the blue line indicates that a material’s ability to reflect neutrons decreases as it gets thicker; most
neutrons are reflected at thin levels, but fewer are as thickness increases.

• Absorption (Grey Area): The grey area grows with material thickness, showing more neutrons are absorbed. It levels off
indicating a limit to how much the material can absorb, regardless of further increases in thickness.

• Transmission (Orange Area): Transmission decreases as material thickness increases since more neutrons are blocked or
absorbed. However, some neutrons still pass through, indicating that no material provides complete shielding.

2) Fig. 7:



Fig. 6. This graph shows Neutron Behavior in Material by Thickness - Reflectance diminishes, absorption saturates, and transmission persistently decreases
as material thickness increases.

Fig. 7. The histogram displays a uniform sampling of material thicknesses, and the adjacent scatter plot illustrates an increase in neutron absorption with
greater material thickness.

3) Fig. 8:
• Upper Histogram: Displays the uniform frequency of thickness measurements for neutron absorption, suggesting that each

thickness from 0 to 10 units was equally examined.
• Right Scatter Plot: Illustrates that as the material thickness (H) increases, the fraction of neutrons absorbed also increases,

with a high density of points at lower thicknesses indicating a greater number of observations in these regions.
4) Fig. 9:
• Upper Histogram: This histogram indicates a consistent number of measurements across all levels of material thickness

for neutron reflection data.



• Right Scatter Plot: Reveals a decrease in the fraction of neutrons reflected as the thickness (H) of the material increases,
with the most significant change occurring at the lower thickness levels.

Fig. 8. Equal Measurement Frequency Across Material Thicknesses for Neutron Reflection

Fig. 9. This graph shows Neutron Behavior in Material by Thickness - Reflectance diminishes, absorption saturates, and transmission persistently decreases
as material thickness increases.



V. CONCLUSIONS

In conclusion, this study has clearly provided us the power
Monte Carlo simulations to understand nature of neutron
transport with various materials. Through various experimen-
tation in both serial and parallel computatation, we have
demonstrated the outcomes that influenced by different ma-
terial properties such as thickness, absorbtion coefficient, and
interaction parameters.

The utilization of parallel processing by using Message
Passing Interface(MPI) has proved us the significance of the
computing large scale computations in parallel environments.
As we can see from the graphs it provided us a faster
computation times, and capability to manage more complex
systems. Our findings demonstrate a clear pattern of neu-
tron behavior decrement in reflection and transmitting with
increased material thickness.

The integration of high performance computing in neutron
transport simulations has proven to be an important asset for
us, advance in nuclear physics and engineering field.

REFERENCES

[1] D. Modric, “Monte carlo modeling of light scattering in paper,” Journal
of Imaging Science and Technology, 2009.

[2] E. E. Lewis, “Fundamentals of nuclear reactor physics,” 2008.
[3] A. Haghighat, “Monte carlo methods for particle transport,” 2020.

[Online]. Available: https://www.researchgate.net/publication/343171994
[4] E. E. Lewis and J. W. F. Miller, “Computational methods of neutron

transport,” 1993.
[5] M. J. Quinn., “Parallel programming in c with mpi and openmp,” 2003.
[6] spagnuolocarmine. (2024) Codinggame. [Online]. Avail-

able: https://www.codingame.com/playgrounds/47058/have-fun-with-
mpi-in-c/mpi-programming

[7] ——. (2024) Message passing interface. [Online]. Available:
https://en.wikipedia.org/wiki/MessageP assingInterface


