
Efficient Parallel Matrix Multiplication:
Comparative Analysis of Pthreads and OpenMP

Implementations
Agit Yesiloz

Department of Computing Sciences
Coastal Carolina University

Conway, SC, USA
ayesiloz@coastal.edu

Abstract—This report describes parallel implementations of
matrix multiplication using the pthreads library and OpenMP
directives in the C programming language. Parallelizing matrix
multiplication is essential for enhancing performance, especially
when dealing with large matrices. The pthreads implementation
involves explicit thread management, while the OpenMP imple-
mentation offers a simpler and more concise approach through
compiler directives.

The study includes a comparative analysis of both implemen-
tations in terms of various performance metrics, such as compu-
tation time, I/O time, and overall execution time. Furthermore,
it investigates the scalability of each approach concerning the
number of threads or processes employed.

The code is organized to read input matrices from binary files,
perform matrix multiplication in parallel, and save the resulting
matrix to an output file. Performance assessment involves timing
measurements using high-resolution timers to accurately capture
computation and I/O overhead.

The results illustrate the effectiveness of parallelization tech-
niques in reducing computation time, considering the overhead
incurred by threading or parallelization constructs. The report
concludes with insights into the strengths and limitations of each
parallelization approach, providing guidance for selecting the
most suitable method based on specific application requirements
and hardware characteristics.

Index Terms—Parallel Computing, Matrix Multiplication,
Pthreads, OpenMP, Parallelization Techniques

I. INTRODUCTION

Matrix multiplication serves as a foundational operation in
numerous scientific and engineering domains, underpinning
algorithms in fields such as numerical simulations, signal
processing, and machine learning. With the increasing size
of matrices, the computational complexity of matrix mul-
tiplication escalates significantly. Consequently, optimizing
the performance of matrix multiplication algorithms becomes
imperative for effectively tackling large-scale problems [1].

Parallel computing emerges as a promising avenue to expe-
dite matrix multiplication by distributing computational tasks
across multiple processing units, including CPU cores or
threads. In this context, pthreads and OpenMP represent two
prevalent parallel programming paradigms in the C program-
ming language. Pthreads furnishes a low-level interface for

managing threads, affording fine-grained control over thread
creation, synchronization, and communication. Conversely,
OpenMP offers a high-level approach through compiler di-
rectives, streamlining the parallelization process and enabling
developers to parallelize code with minimal alterations.

This report undertakes a comparative examination of paral-
lel matrix multiplication implementations using pthreads and
OpenMP in the C programming language. The objective is
to assess the performance and scalability of each approach,
providing insights into the trade-offs between explicit thread
management and directive-based parallelization.

The study encompasses diverse facets of parallel matrix
multiplication, encompassing input/output (I/O) operations,
computation time, overall execution time, and scalability
concerning the number of threads or processes employed.
Performance metrics are gauged using high-resolution timers
to precisely capture the time allocated to computation and
I/O operations, facilitating a comprehensive analysis of the
parallelization overhead.

The subsequent sections of this report are structured as
follows: Section 2 furnishes an overview of the pthreads
and OpenMP implementations, elucidating the parallelization
strategies and code organization. Section 3 delineates the
experimental setup, encompassing the hardware environment,
input data, and performance evaluation methodology. Section 4
delineates the results of the performance analysis, juxtaposing
the pthreads and OpenMP implementations concerning execu-
tion time and scalability. Finally, Section 5 deliberates on the
findings, accentuating the strengths and limitations of each
parallelization approach, and proffers recommendations for
selecting the most appropriate method predicated on specific
application requisites and hardware attributes.

This work makes the following contributions:
• It provides a detailed comparative analysis of paral-

lel matrix multiplication implementations using pthreads
and OpenMP in the C programming language. [2]By
examining both approaches, this study offers insights
into the trade-offs between explicit thread management
and directive-based parallelization, helping developers



choose the most appropriate method for their specific
requirements.

• The study evaluates the performance of pthreads and
OpenMP implementations in terms of computation time,
I/O time, and overall execution time. By employing high-
resolution timers and carefully designed experiments, it
accurately captures the performance characteristics of
each parallelization technique and identifies factors in-
fluencing their efficiency.

• Through experiments varying the number of threads or
processes, this work assesses the scalability of pthreads
and OpenMP implementations. Understanding how per-
formance scales with increasing computational resources
is crucial for effectively utilizing parallel computing in
large-scale applications.

• The report provides practical insights into parallel pro-
gramming techniques, demonstrating how pthreads and
OpenMP can be leveraged to improve the performance
of matrix multiplication algorithms. It discusses common
pitfalls, optimization strategies, and best practices for
parallelization, empowering developers to optimize their
code effectively.

• By presenting a comprehensive comparison and analysis,
this work guides developers in selecting the most suitable
parallelization approach for their specific application do-
mains and hardware platforms. It highlights the strengths
and limitations of each method and provides recommen-
dations based on performance considerations and ease of
implementation.

This paper is organized as follows. Section II provides an
outline for the software framework design.

In Section ??, the experiments are outlined and results are
discussed to evaluate the enhancements. Section ?? concludes
the paper.

II. DESIGN

In this section, we’ll delve into the design and implemen-
tation details of parallel matrix multiplication using the C
programming language. Our goal here is to make matrix mul-
tiplication more efficient and scalable by tapping into parallel
computing techniques. We’ll discuss the choices we made
regarding the program’s structure, algorithms, and methods
used for parallelization.

We’ll walk through how we managed threads, synchronized
their operations, and handled various aspects of parallel pro-
gramming in C, focusing on both pthreads and OpenMP ap-
proaches. Additionally, we’ll explain how we integrated high-
resolution timers and devised methodologies for accurately
measuring the impact of parallelization on computation time,
I/O operations, and overall execution time.

This section aims to provide you with a clear understanding
of how parallel matrix multiplication is implemented in C.
We’ll break down the key concepts and decisions behind our
design, using examples and explanations to help you grasp
the complexities of parallel programming and the potential
benefits it offers for speeding up matrix computations..

Fig. 1. Matrix Generation Process

A. Matrix Generation

To generate matrices for use in matrix multiplication ex-
periments, a C program makematrix.c was developed. This
program takes three command-line arguments: the number of
rows (row), the number of columns (col), and the filename
(filename) to which the matrix data will be written.

Dynamic Memory Allocation: The malloc2D() function is
responsible for dynamically allocating memory for a 2D array
of doubles using a contiguous block of memory. This ensures
efficient memory usage and cache locality, as all elements of
the matrix are stored in adjacent memory locations.

Matrix Initialization: The initialize2D() function populates
the allocated matrix with sequential double values. By iterating
over each element of the matrix and assigning a unique double
value based on its position, this function ensures that each
element has a distinct value, facilitating differentiation during
matrix multiplication.

File Output: The write2D() function writes the matrix
data to a binary file in row-major order. It begins by storing
the dimensions of the matrix (rows and cols), followed by
the double values of each element. This binary file format
optimizes storage space and enables efficient reading of matrix
data during subsequent matrix multiplication operations.

This matrix generation process provides a systematic and
efficient approach to creating matrices of specified dimensions
for use in matrix multiplication experiments.

1) Matrix Generation Process: The matrix generation pro-
cess involves the following steps:

1) Specify the dimensions of the matrix (number of rows
and columns) and the filename for the output matrix data
file.

2) Allocate memory for the matrix using the malloc2D()
function.

3) Initialize the matrix with sequential double values using
the initialize2D() function.

4) Write the matrix data to a binary file using the write2D()
function.

Figure 2 illustrates the matrix generation process flow.



Fig. 2. Matrix Generation Process

B. Matrix Multiplication with Pthreads

The matrix multiplication algorithm implemented in
pth_matrix_matrix.c utilizes the pthreads library to
achieve parallelism. Below is an overview of the program’s
structure and key components:

• Header Inclusions: The program starts by includ-
ing necessary header files such as <stdio.h> and
<stdlib.h> to handle standard I/O operations and
memory allocation.

• Global Variables: Global variables are declared to track
timing information for computation and I/O operations.

• Memory Allocation: The malloc2D function dynami-
cally allocates memory for 2D arrays of double precision
floating-point numbers, ensuring efficient memory usage
and contiguous storage for matrices.

Fig. 3. Snippet of the pth_matrix_matrix.c

• Matrix Multiplication Function: The core of the pro-
gram lies in the pth_matrix_matrix function, which
performs matrix multiplication in parallel using pthreads.
Each thread computes a subset of the output matrix
elements.

• Main Function: The main function parses command-
line arguments to specify input and output file names
along with the desired number of pthreads threads to
use. Input matrices A and B are read from binary files
provided as command-line arguments.

• Parallel Execution: The program employs pthreads to
parallelize the matrix multiplication operation. Threads
are created using pthread_create and synchronized
using pthread_join.

• Result Output: Once matrix multiplication is completed,
the resulting matrix C is written to an output file specified
in the command-line arguments. Timing information,
including computation time and I/O time, is recorded and
printed to the console.

This subsection provides insights into the implementation
of matrix multiplication with pthreads, along with a snippet
of the code for reference (see Figure 3).

C. Matrix Multiplication with OpenMP

The matrix multiplication algorithm is implemented in omp-
matrix.c leverages the OpenMP library to achieve parallelism.
Here’s a concise summary of the program’s structure and
functionality:

• Header Inclusions: The program begins by includ-
ing necessary header files such as <stdio.h> and
<stdlib.h> for standard I/O operations and memory
allocation, as well as <omp.h> for OpenMP support.

• Memory Allocation: Similar to the pthreads version, the
malloc2D function is utilized to dynamically allocate
memory for 2D arrays of double precision floating-point
numbers.

• Main Function: The main function parses command-
line arguments to specify input and output file names,
along with the desired number of OpenMP threads to
use.

• Matrix Multiplication: The core computation is per-
formed within a parallel region using OpenMP direc-
tives. The #pragma omp parallel for directive
distributes the iterations of nested loops across multiple
threads for efficient parallel execution.

• Result Output: After matrix multiplication is completed,
the resulting matrix C is written to an output file specified
in the command-line arguments. Timing information,
including computation time and I/O time, is recorded and
printed to the console.

This subsection offers a succinct overview of the OpenMP-
based matrix multiplication implementation, along with a
snippet of the code for reference (see Figure 4).

III. EXPERIMENTATION AND RESULTS

In this section, the experimental setup, execution procedure,
and obtained results are discussed. The matrix multiplication
algorithms implemented using pthreads and OpenMP were ex-
ecuted on the Expanse portal, a high-performance computing
environment. Subsequently, the output files generated were
analyzed using a Python script to generate performance graphs.



Fig. 4. Snippet of the omp_matrix_matrix.c

Finally, a comparison was conducted between the pthreads and
OpenMP implementations in terms of execution time, speedup,
and efficiency.

A. Experimental Setup

The experiments were conducted on the Expanse portal,
a powerful computing platform equipped with multi-core
processors. The pthreads and OpenMP implementations of
matrix multiplication were compiled and executed using GCC
compiler with optimization flags enabled.

B. Execution Procedure

The matrix multiplication programs were executed with
various input sizes and thread counts to evaluate their per-
formance under different configurations. Command-line argu-
ments were provided to specify the input matrices’ filenames,
output filename, and the number of threads to utilize.

Upon execution, the programs generated output files con-
taining the resulting matrix and recorded timing information
for computation and I/O operations.

C. Analysis and Graph Generation

A Python script was developed to analyze the output files
and extract relevant metrics such as computation time, I/O
time, and matrix dimensions. Using the pandas and matplotlib
libraries, the script generated graphs illustrating the relation-
ship between the number of threads and various performance
metrics.

Fig. 5. Experimental Setup on the Expanse Portal

Fig. 6. Snippet of Python Script that generates images



D. Comparison of Results

The performance metrics obtained from the pthreads and OpenMP implementations were compared in terms of execution
time, speedup, and efficiency. Speedup was calculated as the ratio of the sequential execution time to the parallel execution
time, while efficiency was computed as the ratio of speedup to the number of threads utilized.

1) Execution Time: The execution time of the pthreads and OpenMP implementations of matrix multiplication was measured
to evaluate their computational efficiency. Execution time refers to the total elapsed time required to complete the matrix
multiplication task, including both computation and I/O operations.

For each implementation, the execution time was recorded across different input sizes and thread counts. The aim was to
analyze how the execution time varies with the number of threads utilized and the size of the input matrices.

Fig. 7. Overall time using Pthread and OpenMP

The similarity in overall execution time between pthreads and OpenMP (OMP) implementations, as depicted in the graph,
indicates that both parallelization approaches are effective in achieving comparable performance for overall task. Both Pthread
and OpenMP exhibit similar performance trends. As the number of threads increases, there is a sharp decline in time, which
eventually. This suggests that both Pthread and OpenMP benefit from increased parallelism up to a point, after which adding
more threads does not significantly improve performance. The similarity in matrix multiplication time between pthreads and

Fig. 8. Matrix multiplication time using Pthread and OpenMP

OpenMP (OMP) implementations suggests that both parallelization approaches achieve comparable efficiency in distributing
the computational workload across multiple threads.

2) Speedup: Speedup refers to how much a parallel algorithm is faster than a corresponding sequential algorithm. [3] It’s
a measure of the effectiveness of parallelization and is defined as:

S =
T1

Tp

where:
• S is the speedup,



• T1 is the execution time of the sequential algorithm,
• Tp is the execution time of the parallel algorithm using p processors.
The ideal speedup is linear, i.e., doubling the number of processors doubles the speed. However, in practice, due to overheads

such as communication and synchronization between processors, the speedup is often sub-linear.

Fig. 9. Overall Speedup for Pthread and OpenMP

From the graphs, it’s evident that both PThread and OMP exhibit similar performance trends. As the number of threads
increases, so does the overall speedup but it doesn’t reach the ideal speedup. This suggests that both PThread and OMP benefit
from increased parallelism up to a point, after which adding more threads does not significantly improve performance.

Fig. 10. Matrix multiplication speedup for Pthread and OpenMP

3) Efficiency: Efficiency in parallel computing refers to the utilization of resources, particularly how effectively the available
processors are used to perform a computation. [?] It is calculated as the ratio of the speedup achieved by a parallel algorithm
to the number of processors used. The efficiency formula is as follows:

E =
S

P
× 100%

Where:
• E is the efficiency,
• S is the speedup, and
• P is the number of processors.
Efficiency values range from 0% to 100%. An efficiency of 100% indicates perfect utilization of resources, where doubling

the number of processors doubles the speedup. However, in practice, efficiency values are often less than 100% due to overheads
such as communication and synchronization among processors.

In summary, efficiency quantifies how effectively the available computing resources are utilized in parallel execution,
providing insights into the scalability and performance of parallel algorithms.



Fig. 11. Overall Efficiency for Pthread and OpenMP

From the graphs, it’s apparent that both PThread and OpenMP demonstrate analogous performance trends. With an increase
in the number of threads, there is a noticeable decrease in efficiency. This observation implies that although augmenting the
thread count initially enhances performance, there exists a saturation point beyond which further thread additions result in less
efficient utilization of computational resources. [1]

Fig. 12. Matrix Multiplication Efficiency for Pthread and OpenMP

As the number of threads increases, the efficiency decreases. This suggests that while increasing the number of threads does
improve performance initially, there is a point of diminishing returns after which adding more threads leads to less efficient
utilization of computational resources.

E. Performance Comparison

It is evident that OpenMP (OMP) exhibits better speedup compared to PThread in terms of parallel computing. This suggests
that OpenMP achieves faster execution times, leading to improved overall performance. However, despite this difference in
speedup, both PThread and OpenMP demonstrate similar efficiency levels. This indicates that although OpenMP may provide
faster computation through better speedup, both approaches utilize computational resources with comparable efficiency, ensuring
effective utilization of available hardware resources. [2]



IV. CONCLUSIONS

In conclusion, the implementation of matrix multiplication
using both PThread and OpenMP parallelization techniques
provided valuable insights into parallel computing perfor-
mance. Through experimentation and analysis, several key
conclusions can be drawn:

1) Performance Trends: Both PThread and OpenMP
implementations exhibited similar performance trends,
with increasing parallelism leading to improved overall
execution time.

2) Speedup and Efficiency: While OpenMP demon-
strated better speedup in parallel computing compared
to PThread, both approaches showed similar efficiency
levels. This suggests that although OpenMP achieves
faster execution times, both PThread and OpenMP uti-
lize computational resources effectively.

3) Scalability: The scalability of both PThread and
OpenMP implementations was evident, with perfor-
mance improvements observed as the number of threads
increased. However, there were diminishing returns in
speedup beyond a certain point, indicating limitations in
scaling parallelism.

4) Optimization Potential: Further optimization of paral-
lel algorithms and resource management strategies could
enhance performance and efficiency. Fine-tuning param-
eters such as thread count and workload distribution may
lead to better utilization of available resources.

5) Considerations for Future Work: Future work could
explore additional parallelization techniques, optimize
memory access patterns, and investigate alternative al-
gorithms to further improve performance and scalability.

In summary, the comparison between PThread and OpenMP
implementations provides valuable insights into the trade-
offs between speedup, efficiency, and scalability in parallel
computing. By leveraging the strengths of each approach
and optimizing parallel algorithms, significant performance
gains can be achieved in computational tasks, contributing to
advancements in parallel computing research and applications.

REFERENCES

[1] G. Schryen, “Speedup and efficiency of computational parallelization: A
unifying approach and asymptotic analysis,” Department of Management
Information Systems, Paderborn University, Year.

[2] D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Title of the
technical report,” Technical Report, March 1989. [Online]. Available:
https://www.osti.gov/biblio/6215375

[3] Wikipedia. (2024) Amdahl’s law. [Online]. Available:


