
Showcasing the Impact of Differing Parallelization
Techniques on a 1-Dimensional Heat Simulation

Devin Bucci
Department of Computing Sciences

Coastal Carolina University
Myrtle Beach, SC, USA

dtbucci@coastal.edu

Agit Yesiloz
Department of Computing Sciences

Coastal Carolina University
Myrtle Beach, SC, USA

ayesiloz@coastal.edu

Abstract—In this project, we explore the differing methods
of parallelization of a 3-point 1-dimensional stencil simulation.
The proposed simulation we opted to explore parallelization
was heat transfer. Heat transfer is shown through a python
script that showcases the temperature of a metal strip over
time for a set length and time index. We first implemented a
serial version of the heat diffusion simulation that measures
computation time, optional IO time and overall time. Next, we
opted to create another copy of the serial file which showcases
the improvement parallelization is able to grant through the
usage of omp directives. Then, we parallelized another copy
through pthreading to showcase possible parallel techniques that
are better/beneficial over another. Both methods of parallelization
showcased speedup, even as we increased iterations, length of the
array and especially thread amount (up to 16). All programs also
showcased an optional file output due to limitations of memory
allocation for testing where too large of executions showed
failure during execution. We first tested for speedup on native
windows machines under the linux subsystem, WSL, then moving
on to test on the San Diego Supercomputer, Expanse. Shown
through our results, we see a general speedup for both omp and
pthreading. Expanding off of the execution, we discuss further the
performance implications of pthreading versus that of openmp
for parallelization. Overall, parallelization of both algorithms
showcase speedup improvements and efficiency limitations.

I. INTRODUCTION

A one-dimensional three-point stencil algorithm is a compu-
tational method used to model heat diffusion. In this context,
heat diffusion refers to the process by which temperature
is able to spread through a metal plate over time. [1] The
algorithm iterates through each time step (numIterations) and
updates temperature based off of the relative adjacency each
point has to each other and what it’s associated temperature
was recorded as. [2]In our case, the different arrays are
swapped to avoid possible incorrect temperature values. By
iteratively using this algorithm, the temperature distribution
will generally increase then reach a level of equilibrium across
the board for the metal plate (metal plate is simulated through
our algorithm). [3]

The simulation is for heat diffusion but we opted to explore
possible methods that can improve a serial implementation
of the aforementioned. In this experiment, we used both
pthreading and opemp.

Pthreads, or POSIX threads, is a method of program design
that focuses on the idea that parallelization can be done by

dividing a program into multiple threads of execution. These
threads can run concurrently within a single process, allowing
for simultaneous execution. [4] This allows for better manage-
ment of resources for multi-core processors while improving
overall performance and responsiveness of an application.
This inherent splitting up of tasks “allow[s] the program to
control multiple different flows of work that overlap in time.
“ (Wikipedia 2024) It’s important to note that pthreading at
least in the circumstance of a 1-dimensional stencil algorithm
can showcase beneficial performance, but generally isn’t the
best method of parallelization. We use pthreading in this
experiment, merely with the idea of comparing it to another
popular method of parallelization; it is a thought experiment.

Expanding on the better method of parallelization is
openmp. Openmp aims to simplify parallel programming by
providing a high-level, API driven and user-friendly approach
for shared-memory systems. For the purpose of this exper-
iment, Openmp uses omp directives for parallelization with
the use of one line. [5]

Openmp is generally a more hands off technique for par-
allelization while pthreading is more prone to race conditions
from the nature of hands on.

Moving forward, this paper is organized as follows. Sec-
tion II provides an outline for the design steps needed to
deliver a serial heat simulation, a pthreading version and an
openmp version. In Section III, the experiments are outlined
and results are discussed to evaluate performance of the
serial algorithm, pthreading algorithm and openmp algorithm.
Section IV concludes the paper.

II. IMPLEMENTATION AND DESIGN

To accurately discuss the importance of parallelization in
regards to our stencil simulation, it is necessary to showcase
the development that led us to that point.

To start, our experiment has the goal of showcasing the
benefits of using parallel programming inside of a heat diffu-
sion simulation with the usage of a 3 point stencil algorithm.
We first need to setup a starting point typically done through
that of a serial algorithm. This serial algorithm is done with a
double nested for loop simulating an efficiency of O(n2). For
the sake of reusability, we opted to use a ”functions.c” file
that stored any function capable of being used across several

different files. The idea in implementing the serial version
of the heat simulation is to ensure the necessary parameters
and build from there. Needed is the length of the array, N,
and the number of iterations, numIterations. After using the
parameters, we build off of it by implementing and initializing
the arrays that we are going to use. Below are the two reusable
functions for both:

void allocateAr(double**A, double **B, int N){
*A = (double *)malloc(N * sizeof(double));
if (*A == NULL) {

fprintf(stderr, "Error A\n");
exit(1);

}
*B = (double *)malloc(N * sizeof(double));
if (*B == NULL) {

fprintf(stderr, "Error B\n");
exit(1);

}
}

void initializeAr(double *A, double *B, int N){
memset(A,0,N*sizeof(double));
A[0] = 1.0;
A[N - 1] = 1.0; // some initial values
memcpy(B, A, N * sizeof(double));

}

After initialization and allocation, the serial computation can
occur. Now, the function as mentioned, uses a double nested
for loop where it is iteratively updated according to Array A
based on the adjacent values. It uses double buffering to avoid
future race conditions.

The function also implements a double buffering technique
as shown through the swapping arrays for data accuracy. After
each iteration, the function will store the contents of array A
into a buffer that is used in the one time file write after the
function call. Below is the function used for the computation
and shows file write with the buffer.

double *buff=malloc(N*numIter*sizeof(double));
for(int i=0; i<numIter; i++) {

for(int j=1; j<N-1; j++) {
A[j] = (B[j-1] + B[j] + B[j+1]) / 3.0;

}
if (filenameA != NULL) {

memcpy(buff+i*N,A,N*sizeof(double));
}
print_array(A, N);
tmp = A; // double buffer approach
A = B;
B = tmp;
}
if (filenameA != NULL) {
write_to_file(fileA, buffer,N*numIter);
}

It’s important to also note that the output file after the
write will contain necessary row and column metadata at the
beginning of the file and is in binary format, row major.

After the development of the serial function, it was neces-
sary to create a function that can read the data from the file

and print it to the screen to ensure that the serial function
is providing the correct data to our output file. Below is that
function:

void print_File(char *filename) {
FILE *file = fopen(filename, "rb");
if (file == NULL) {

printf("Error opening %s\n", fname);
exit(1);

}
int N, numIterations;
fread(&N, sizeof(int), 1, file);
fread(&numIter, sizeof(int), 1, file);
double *data = (double *)...
malloc(N *(numIter+1) * sizeof(double));
for (int i = 0; i < numIter+1; i++) {

for(int j = 0; j < N; j++) {
fread(&data[i*N + j]...
sizeof(double), 1, file);
printf("%1.2lf ", data[i*N + j]);

}
printf("\n");

}
fclose(file);
free(data);

}

Once the desired results are achieved for the serial function
and is compared with data that was confirmed to be true,
we moved to a parallel implementation. To experiment with
threading and showcase performance impact, it is necessary to
display the scope of experiment along with necessary parame-
ters for execution. Parameters were first listed in small 2 digit
amounts for both length and iterations to test for accuracy then
moved to larger million sized length with tens of thousands
for number of iterations. Along with these parameters we used
a thread amount of 1 to 64 increasing in a multiple of 4 each
time. Once parameters were established and tested natively to
ensure the accuracy of the native function at larger amounts
we would be able to move to using a parallel version. [6]

Fig. 1. San Diego Super Computer

Moving on to our first parallel version of the serial algorithm,
we opted to use the openmp library with omp directives for
parallelization. The program is generally the same except for
the fact that, seperate threading functionality has been added to

parallelize the computational work inside of our main function.
We opted to call the omp file, ”omp-midterm-question.c”, it
takes 4 arguments two for length and iterations, one for the
output file and one for the amount of threads to be used. As
mentioned previously, it uses the openmp library to achieve
parallelization.

Openmp is an acronym for Open Multi-Processing. It is a
directive-based API (Application Programming Interface) used
for developing parallel programs. It uses compiler directives,
which is a statement or command used to force the compiler to
commit a specific action during the compilation of code. [7]
These compiler directives specify what type of code should
be generated, for example one such directive is “pragma omp
parallel for” which would then parallelize a for loop within
its bounds. It does the threading and parallelization behind
the scenes within the API. Our specific compiler directive is
shown below:

#pragma omp parallel for

The directive will automatically parallelize what is within
its bounds using a determined amount of threads called from
the command line. The statement was placed within the second
loop for accurate parallelization as parallelizing the outer loop
will not affect the results for this particular experiment.

Once the implementation of the omp parallel version was
completed, we opted to test for difference using a new program
inside of our directory. This program finds the total sum
of squared errors and the average percent relative errors, if
there are none it will print out to the terminal window that
the data being compared is identical. Below is a part of the
implementation for this function:

fileA = fopen(argv[1], "rb");
if (fileA == NULL) {

printf("Cannot open file %s\n",argv[1]);
return 1;

}

fileB = fopen(argv[2], "rb");
if (fileB == NULL) {

printf("Cannot open file %s\n",argv[2]);
return 1;

}

while(fread(&valA,sizeof(double),1,fileA)&&
fread(&valB, sizeof(double), 1, fileB)) {

double diff = valA - valB;
TSSE += diff * diff;
AVGPRE += fabs(diff) / fabs(valA);
count++;

}

AVGPRE /= count;

To ensure the serial and omp versions are producing the
same results, the ”mydiff.c” program was created. Upon
testing, we are able to determine that the upon using the same
parameters for both omp and serial we can see that mydiff.c
produces that there is no difference between the two. Below is

the mentioned equivalency between the two .raw files ”A.raw”
being from the serial code and ”C.raw” being from the omp
code. ci

CSCI473/HW05/Code$./mydiff B.dat C.dat
The matrices are identical.

Upon completion of the omp version of the code, the
experiment shifts to use another method of parallelization.

The ”pth-midterm-question.c” program orchestrates par-
allelization of our 1-dimensional 3-point stencil algorithm
through dividing the computation by thread amount. It operates
by setting a unique identifier for each thread then calculates the
workload for an available thread with the variable ”local m”.
The remainder is then calculated to ensure that parallel work
occurs even if there is uneven distribution. The next variables
are to show the range of data each thread will encompass
and the for loop then parallelizes the computation from the
previous serial version. The function also has implementation
for writing to a file with the filenameA being passed in but
for executing the program this won’t be used.

A previous iteration of the parallel computation consisted of
spawning thousands of threads and forking them together after
each iteration which led to a heavy decrease in computational
speedup/efficiency. The algorithm now spawns threads once
and joins them once after being called. With the usage of this
implementation it would be easier to run into race conditions
so to solve this issue we opted for the usage of barriers.
Barriers ensure synchronization where before continuing all
threads reach a synchronization point. They are used before
several key areas where thread synchronization is pertinent.
To avoid the unnecessary waste of computation work we used
one thread to swap the pointers for the associated arrays A, B
and tmp.

Ideally, this would speedup computation time as threads are
increased. Below is the parallelized version for pthreading.

void *thread_Function(void* rank) {
ThreadArgs *thread_args = (ThreadArgs *)rank;
//double *buffer = thread_args->buffer;
char *filenameA = thread_args->filenameA;
long my_rank = thread_args->rank;

double *buffer = NULL;
if (filenameA != NULL) {

buffer = malloc(N * numI * sizeof(double));
if (buffer == NULL) {

fprintf(stderr, "Allocation Fail. \n");
exit(1);

}
}

// Determines range for threads
int local_n = BLOCK_SIZE(my_rank, thread_count,
N-2);
int myfirstrow = BLOCK_LOW(my_rank, thread_count,
N-2) + 1;
int mylastrow = my_first_row + local_n - 1;

for (int iter = 0; iter < numI; iter++) {

for (i = myfirstrow; i <= mylastrow; i++) {
A[i] = (B[i-1]+B[i]+B[i+1])/3.0;

}
if (filenameA != NULL) {
pthread_barrier_wait(&barrier);
memcpy(buffer + iter * N, A,
N * sizeof(double));

}

pthread_barrier_wait(&barrier);
if (my_rank == 0) {
double *tmp = A;
A = B;
B = tmp;

}
pthread_barrier_wait(&barrier);

}

pthread_barrier_wait(&barrier);
if (filenameA != NULL && my_rank == 0) {

write_to_file(filenameA, buffer, N*numI);
free(buffer);

}
return NULL;

}

Quinn macros were effectively utilized to parallelize the pro-
gram of updating an array based on the values of its neighbor-
ing elements. By assigning each thread a specific portion of the
array to process, you ensured an even distribution of workload.
The use of BLOCKSIZE, BLOCKLOW, and BLOCKHIGH
macros allowed each thread to identify its respective segment
of the array, thereby applying simultaneously to different
sections of the array without race conditions. This approach
not only optimized the computation by leveraging parallel
processing but also provided a practical application of parallel
programming principles, showcasing how theoretical concepts
can be implemented to achieve significant improvements in
performance.

After designing both the serial and parallel code needed
to test for performance improvement and an accurate heat
plate diffusion, we opted to move from natively testing the
code on our own separate machines to something that can
handle higher thread amounts. The switch from using a native
machine to something akin to a supercomputer is due to the
fact hardware limitations could impact performance or that
peformance in general could be vastly different from machine
to machine. So for the sake of consistency and algorithmic
speedup, we opted to use the San Diego Supercomputer,
Expanse.

Expanse is a supercomputer based out of San Diego that is
a cluster of ”13 SDSC Scalable Compute Units” designed to
deliver at its peak a performance of 5.16 peak petaflops. Each
expanse node has access to a parallel file system consisting of
12 petabytes and a storage system consisting of 7 petabytes.
We opted to run our files on the compute node under the debug
partition. The capabilities of the compute node are listed as
such: 728 nodes, 2 sockets, 64 cores, 2.25 GHz, 4608 GFlop/s,
256 GB DDR4 Dram, etc (Expanse retrieved 2024).

To run our experiments as stated previously, we used the Ex-
panse supercomputer within the shared partition. We submitted
a batch job using our run experiments.sh script that automated
the process of loading modules needed for execution and the
actual steps needed to run all of our programs at once. Below
is a snippet of the code from our sbatch script:

i=0
iter=(7300...58400)

for((N=4000000;N>=500000; N-=500000)); do

iter_i=${iter[$i]}
./midterm-question $N $iter_i
for ((P=1; P<=64; P*=4)); do

echo "N=$N, P=$P, iter=$iter_i"
./omp-midterm-question $N $iter_i $P
./pth-midterm-question $N $iter_i $P

done
((i++))

done

All of the SBATCH directives are for expanse to know what
is needed for processing this script, it shows the memory we
need, the account we are using, the output file name, etc.
Shown in the script is a makefile (“make clean all”) which
was created with the purpose of compiling all of our files at
the same time to mitigate the amount of unnecessary manual
work done by the user. It also will remove all .raw files after all
necessary comparisons. It links all of our source files together
with shell commands written in the file, shown below is the
exact Makefile we used for this project.

CC=gcc
CFLAGS=-g -Wall -Wpedantic -std=c99
LDFLAGS=-lm -lpthread
PROGS= midterm-question ... mydiff

all: $(PROGS)

functions.o: functions.c functions.h
$(CC) $(CFLAGS) -c functions.c -o functions.o

midterm-question: midt.c functions.o
$(CC) $(CFLAGS) -o ... $(LDFLAGS)

omp-midterm-question.o: ...
$(CC) -fopenmp $(CFLAGS) -c ...

omp-midterm-question: omp-midterm functions.o
$(CC) -fopenmp $(CFLAGS) -o ... $(LDFLAGS)

pth-midterm-question: pth-midterm functions.o
$(CC) $(CFLAGS) -o ...$(LDFLAGS)

mydiff: mydiff.c
$(CC) $(CFLAGS) -o mydiff mydiff.c $(LDFLAGS)

clean:
rm -f $(PROGS) *.o *.raw

III. EXPERIMENTATION AND RESULTS

Moving on to experimentation and results, the objective we set out to meet is to display different parallelization techniques
while hopefully being able to speedup the serial technique of a heat plate diffusion simulation.

It’s important to note, at least briefly until results, that caching plays a roll in the complete performance speedup of the
algorithms as limits of cache size may affect the direct speedup of the algorithm.

All performance results were measured in the shared partition on the shared node of the expanse supercomputer. No
inconsistencies were recorded with regards to where the testing occurred. A simple ”run experiments.sh” script was used to
run all the instances of each length, iteration amount and thread size.

A. Experimentation

So, we used the file generated by the bash script which created a .out file and transcribed all the data into a csv file which
could be automated to be ran with a python script. The python script would then output graphs needed to showcase improvement
or negative performance of efficiency, time or speedup. Shown is the Overall OMP Time versus the Overall Pthreading Time.
Both graphs are parallelized just through different aforementioned ways.

Fig. 2. The figure above shows the overall time it takes to execute a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both omp and
pthreads.

Figure 2 shows Pthreading has a higher rate of performance than that of OMP. The curves follow a very similar path
as threads increase time is lowered. The figure shows however, when OMP reaches a thread amount of 64 time to execute
separates depending on array size. Generally higher iteration amounts showcase worse performance and higher time while
lower iteration amounts showcase similar performance to pthreading.

After the creation of the time graph, speedup is able to be calculated for both OMP and Pthreads and subsequently created
into a graph to be viewed visually.

The speedup formula is given by:

Sp =
Serial Time

Parallel Time

We then used the formula to visualize overall speedup for both OMP and pthreading, shown below is figure 4.

Fig. 3. The figure above shows the overall speedup it takes to execute a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both omp
and pthreads.

According to figure 3, it seems that speedup follows a general positive trend for both pthreading and omp until 64 threads.
Speculation of possible reasons for this drop in productivity led us to possible cache contention or some thread overhead
limiting speedup. Depending on the length given for the array , thread speedup was wildly different at 64 threads across the
board for OMP. OMP shows negative trends for some array sizes while showing a linear positive trend for other arrays.

Pthreading was very similar to OMP, but showed less of a possible theoretical speedup than OMP. To elaborate, OMP
showed possible speedup of 30x at its best while pthreading seemed to cap out at around 15-18x for all array sizes. Now,
pthreading did show a much better job of staying consistent across all sizes for 64 threads but at it’s best never beat OMP’s
best but on average did a lot better than OMP. Pthreading from lower thread amounts also showcased almost ideal level’s of
speedup but plateau’d at 64 threads.

We now move to look at the potential efficiencies of both, Efficiency is defined as the speedup being measured divided by the
amount of processes being used. Note that this is overall efficiency for omp and pthreads. The efficiency (Ep) of parallelization
can be calculated using the formula:

Ep =
Speedup

Number of Processes
Using the efficiency formula, we use the previous data we gathered to create graphs for both omp and pthreads. Shown below
in figure 4 are the graphs to visualize our programmatic efficiency.

Fig. 4. The figure above shows the overall efficiency for execution of a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both omp
and pthreads.

Upon initial analysis of both graphs for efficiency, we are hit with a similar result with a clear winner. OMP starts roughly
at an efficiency of 65-70% while pthreading starts around 100% even achieving slightly higher than that for some amounts
of length. While note that due to Amdahl’s law, a theoretical limit on speedup, it is impossible for the 100% efficiency to
be a result of the algorithm. The algorithm is likely being improved through caching or better memory utilization. Pthreading
shows a general linear negative trend with all of the array sizes following that example. Pthreading reaches an efficiency at 64
threads of around 30% to 10%. OMP showcases a much different trend where it is negative and linear generally, it changes

at 64 threads. At 64 threads for OMP, some array sizes keep an effciency of above 40% where other sizes go as low as just
above 0% efficiency.

It’s important to note that the timing, speedup and efficiencies were tested without the usage of IO for this particular test
and the next few graphs will be referring to just the computational work. The computational work did not use the writing to
file so the trend of graphs will be the same as above.

Moving on to the timing data for the computational work for both pthreading and OMP, results will likely be very similar
as IO was not used during this execution. Below is figure 5 for the first of the graphs for computational work related to the
time required for execution of both OMP and Pthreading.

Fig. 5. The figure above shows the computation time for execution of a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both omp
and pthreads.

Shown above is almost the same exact graph as our overall time for omp and pthreading. As previously talked about, for
OMP time it decreases exponentially until 64 threads. At 64, the algorithm seems to bottleneck at varying degrees of size and
iteration. Perhaps, the method at how openmp handles this parallelization is causing the variations in performance. Generally
lower size saw the most impact of a higher thread amount. Pthreading also once again showed improvement flat across the
board, with a higher precision.

Moving on, we need to once again visit speedup but this time in regards to the computational work being done. It is the
same formula however we have different graphs this time to showcase the visualization. Shown in figure 6 are the results of
speedup in relation to increasing thread amounts for both omp and pthreads.

Fig. 6. The figure above shows the computation speedup for execution of a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both
omp and pthreads.

As shown in the figure, the computational speedup graph is almost identical to the overall speedup graph. Hence, to discuss
once again the reasons for this result would be redundant. Shown in figure 8 is the computational efficiency graph and is also
identical to the overall efficiency graph. So once again, it would be redundant and not necessary to explain the possible reasons
for this. The reason for identical is because IO wasn’t used in this test and hence memory allocation would then take less than
a second to run.

Fig. 7. The figure above shows the computation efficiency for execution of a 1-Dimensional 3-Point heat simulation stencil with increasing threads for both
omp and pthreads.

Fig. 8. The figure above shows the diffusion process where heat moves from warmer to cooler areas until a uniform temperature reached.

Contour plot displaying the temperature variation of a metal strip over time, which is likely the outcome of simulating a
one-dimensional heat conduction problem using a stencil algorithm. In computer science, stencil algorithms are often used
to model heat distribution or other physical processes where each point’s value is updated based on neighboring values over
discrete time steps.

On the x-axis, the ’Time index (iterations)’, showing that the simulation is iterated over time—a standard approach in
numerical simulations where the physical time is approximated by a series of time steps. The y-axis, labeled ’Metal strip
(Pixels)’, suggests that the metal strip’s physical domain has been divided into a grid for computational purposes, each ’pixel’
representing a discrete segment of the strip. [3] The contours are quite smooth, implying a steady and gradual transition of
heat, which is typical in diffusion processes where heat moves from warmer to cooler areas until a uniform temperature is
reached, assuming no sources or sinks of heat are introduced after the initial conditions. This kind of plot is a quick way to
visualize and analyze the results of the simulation, giving insights into both spatial and temporal temperature dynamics of the
system.

B. Results

Results are within the scope of what we expected from this
experiment. OMP showed a large increase in speedup whiel
pthreading showed even better improvement. The only time
a portion of our parallel programs was worse than the serial
code was at 1 thread which would be a result from increased
overhead as a result of all the unused threading operations. An
earlier iteration of this project showed a general negative trend
for pthreading reaching very low performance improvement,
but now with the usage of sychronization techniques pthread-
ing showcases great speedup. Pthreading, for computational
speedup showcased a general trend that was very close to
the ideal speedup until 64 threads. Granted, the experiment
jumped in multiples of 4 so we don’t have much information
to go off of from 16 threads to 64. We can visually see that
there was a massive plateau in speedup, efficiency and time
comparing 16 threads and 64 threads.

A possible reason for this might be where we were able
to execute the computation inside of Expanse. We had to use
the Shared partition which only has access to 128 threads in
totality. We had to execute this project alongside of other
people, as it is the nature of the shared partition. Due to
running large scripts alongside other large scripts from other
users, if both were requesting access to say 64 threads it is
extremely likely that we wouldn’t see as good of speedup due
to the nature of limited resources on a shared node.

Efficiency inside of this project had interesting results as
well. At the beginning with 1 thread, efficiency for both overall
and computational showed pthreading having higher efficiency
than the serial. We directly observed superlinear speedup.
Superlinear speedup is this theoretical speedup amount where
the algorithm speedups more than it should be physically
allowed to. It is only achievable from a hardware standpoint
and is incapable of producing those results from strictly
software. In our example, as we are running on the Expanse
supercomputer, it is likely due to improvements of Cache or
better memory utilization as a result of how the system is
set up. As thread amount 64 generally limited the parallel
programs, it shows the efficiency much lowered at that amount,
which is expected.

OMP encountered that strong drop in performance for
several different lengths of the array, measuring effiency close
to zero and speedup lowered as a result. Possible speculation
of reasoning for these results could be cache contention, thread
overhead and even possible algorithmic design.

To explore more with cache contention, with an increase
of thread amount there is a higher chance for cache thrashing
where threads or cores compete to access resources inside of
the cpu cache. This might result in cache invalidations that
would lead to increased time, false sharing where different
threads modify data that are in the same space in the cache
and possibly more.

Algorithmic design of how Openmp handles large thread
sizes for this particular algorithm might affect how higher
number of threads are handled and if they are handled poorly,

increased time to use the appropriate resources might occur.
There might also be bottlenecks in performance as well as a
result.

Something that was genuinely unexpected was how long
it would take for the OMP to run the algorithm on 1 thread
compared to serial. It was typically 30 seconds longer than that
of the serial algorithm which is a strange result. Pthreading
showed similar timing to serial but on early iterations showed
the same changes of OMP. It’s possible that as we changed
the pthread code to use better synchronization practices, it
changed the 1 thread handling for time. Whereas, OMP uses
a single pragma directive where synchronization is done either
entirely behind the scenes by openmp or not at all. OMP has
pragma barriers that are able to synchronize threads but if used
improperly can either break the algorithm or slow it down
immensely.

IV. CONCLUSIONS

Overall, this project sought out to see if a heat plate
simulation was able to be parallelized in a way that improved
algorithmic execution time. Not so suprisingly, both parallel
versions of our program showcased faster execution time,
speedup and efficiency. Openmp had a higher variability to
it’s time where depending on the number of iterations being
called, the time to run was heavily affected being either
faster or slower. Pthreading showcased a better precision
where no matter the number of iterations, it would generally
showcase improvement. The project focused on improvements
of computational time but did explore IO at a local level to
determine areas of improvement. Further study on areas of
OMP being much faster than pthreads at different levels of
iteration amounts need to occur in a following experiment.
Any negative trends resulting from OMP were likely a result
of the environment/node it was ran in or were a result of
caching limitations, resource contention or algorithmic design.
To finish, the project showed improvement against the serial
design up to 16 threads even coming close to the ideal line for
pthreading while 64 threads limited the rate of improvement
for both parallel designs.

REFERENCES

[1] P. H. Gunawan. (2016) Scientific parallel computing for 1d
heat diffusion problem based on openmp. [Online]. Available:
https://ieeexplore.ieee.org/document/7571960

[2] Wikipedia. (2024) Heat transfer. [Online]. Available:
https://en.wikipedia.org/wiki/Heattransfer

[3] C. E. Leiserson. (2010) Stencil computing. [Online]. Available:
https://courses.csail.mit.edu/6.884/spring10/labs/

[4] randu. (2024) Multithreaded programming. [Online]. Available:
https://randu.org/tutorials/threads/

[5] T. Mattson. (2024) Openmp in a nutshell. [On-
line]. Available: https://tildesites.bowdoin.edu/ ltoma/teaching/cs3225-
GIS/fall17/Lectures/openmp.html

[6] M. explained. (2024) Multithreading explained. [Online]. Available:
https://www.ionos.ca/digitalguide/server/know-how/multithreading-explained/

[7] R. M. LEONARDO DAGUM. (1998) Openmp: An industry
standard api for shared memory programmin. [Online]. Available:
https://pages.cs.wisc.edu/ david/papers/ieeecse1998openmp.pdf

